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Abstract10

NASA’s Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar mission11

which will produce near global (51.6oS to 51.6oN) maps of forest structure and above-ground biomass12

density (AGBD) during its two year mission. GEDI uses a waveform simulator for calibration13

of algorithms and assessing mission accuracy. This paper implements a waveform simulator, us-14

ing the method proposed in Blair and Hofton (1999), and builds upon that work by adding in-15

strument noise and by validating simulated waveforms across a range of forest types, airborne16

laser scanning (ALS) instruments and survey configurations.17

The simulator was validated by comparing waveform metrics derived from simulated wave-18

forms against those derived from observed large-footprint, full-waveform lidar data from NASAs19

airborne Land, Vegetation, and Ice Sensor (LVIS). The simulator was found to produce wave-20

form metrics with a mean bias of less than 0.22 m and a root mean square error of less than 5.721

m, as long as the ALS data had sufficient pulse density. The minimum pulse density required de-22

pended upon the instrument. Measurement errors due to instrument noise predicted by the sim-23

ulator were within 1.5 m of those from observed waveforms and 70-85% of variance in measure-24

ment error was explained. Changing the ALS survey configuration had no significant impact on25

simulated metrics, suggesting that the ALS pulse density is a sufficient metric of simulator ac-26

curacy across the range of conditions and instruments tested. These results give confidence in27

the use of the simulator for the pre-launch calibration and performance assessment of the GEDI28

mission.29

1 Introduction30

NASA’s Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar mission, which31

was successfully launched on 5th December 2018, will make near global measurements of the Earth’s32

land surface within the orbital bounds of the International Space Station (51.6oS to 51.6oN) (Dubayah33

et al., 2014; Stysley et al., 2016). A number of data products will be derived from the measure-34

ments, including ground elevation, canopy height, foliage profiles and above-ground biomass den-35

sity (AGBD). These products will be at higher resolution and with higher accuracy than has been36

previously possible with spaceborne lidar (Los et al., 2012), enabling a better understanding of37

terrestrial processes and ecology.38

The pre-launch calibration plan of GEDI requires a tool to simulate GEDI waveforms. This39

is needed to provide data for pre-launch calibration of algorithms, and to assess the instrument40

performance as part of an end-to-end simulator. In particular, the AGBD algorithm requires GEDI41

Corresponding author: Steven Hancock, steven.hancock@ed.ac.uk

–1–

https://ntrs.nasa.gov/search.jsp?R=20190025717 2020-05-05T12:24:31+00:00Z



measurements co-located in space and time with ground estimates of AGBD (Drake et al., 2002).42

GEDI will only be in orbit for two years, limiting the use of real data for calibration to ground43

data collected within a short window of time. A simulator allows data from any site with coin-44

cident field AGBD estimates and data suitable for simulating GEDI signals to be used, enabling45

the exploitation of decades worth of data.46

To achieve this the waveform simulator must be able to produce accurate GEDI-like sig-47

nals and derived metrics across a broad range of biomes and input datasets. It must also be able48

to predict the impact of instrument noise on derived accuracy. This paper describes and validates49

the GEDI simulator to ensure that it can be used in the GEDI calibration and validation plan50

with confidence.51

1.1 Simulating large-footprint lidar52

Large-footprint, full-waveform lidars emit short pulses of light to illuminate an area of the53

ground between 5 m and 90 m in diameter. The returned energy is recorded as a function of time54

to produce a waveform, which is the vertically projected area of scattering surfaces, weighted by55

their angular reflectances, assuming no multiple scattering (figure 1). Full-waveform lidar sig-56

nals can be simulated from direct measurements of vertical structure from discrete-return air-57

borne laser scanning (ALS) (Blair & Hofton, 1999; Milenković et al., 2017) or terrestrial laser scan-58

ning, TLS, (Hancock, Anderson, Disney, & Gaston, 2017), or through a radiative transfer model59

that makes use of similar structural data (Gastellu-Etchegorry et al., 2015; Hancock, Lewis, Fos-60

ter, Disney, & Muller, 2012). A method that can be driven by readily available data, without re-61

quiring site specific assumptions or rarely collected ancillary data, will ensure that the widest pos-62

sible range of data can be used in GEDI’s pre-launch calibration. For this reason, TLS datasets,63

which cover only small areas, although in much greater detail than possible with ALS, and ra-64

diative transfer models, which require ancillary datasets of optical properties and crown struc-65

ture (Ni-Meister, Yang, Lee, Strahler, & Zhao, 2017), were not considered for this study.66

Figure 1. Illustration of GEDI instrument characteristics and how they contribute to the measured

waveform shape.
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Discrete-return, small-footprint ALS data (referred to as ALS throughout the rest of this67

paper) has been regularly collected since the 1990s, with many national agencies freely offering68

data. Discrete-return lidars employ an almost identical measurement scheme as full-waveform69

systems, emitting the same outgoing pulse and receiving the signal with similar detectors. In-70

stead of digitising the full-waveform, they use proprietary algorithms to extract a number (typ-71

ically 1-20) of discrete ranges from the returned energy (Disney et al., 2010), and have footprints72

typically of between 10 cm and 1 m diameter. This produces an easily interpretable point cloud,73

where points correspond to the estimated location of scattering surfaces, but in diffuse targets74

such as vegetation, not all targets are recorded due to the finite length system pulse and dead-75

time (Anderson, Hancock, Disney, & Gaston, 2016; Disney et al., 2010). Discrete-return ALS can76

be converted to a simulation of large-footprint, full-waveform lidar data with the method pre-77

sented in Blair and Hofton (1999) and described in section 2.1. Simulating large-footprint lidar78

from discrete-return ALS assumes that the recorded point cloud is representative of the verti-79

cal distribution of scattering surfaces (and so gaps) and ignores multiple scattering of light. Whilst80

the assumption of the point cloud being representative of the distribution of vertical surfaces has81

been shown to not be true at the resolution of an individual small-footprint, ≈30 cm diameter82

(Hancock et al., 2017), it can be true at the scales of a large-footprint (>5 m) lidar. Blair and83

Hofton (1999) compared waveforms simulated from the first-return only FLI-MAP ALS (Blair84

& Hofton, 1999) to observed large-footprint lidar over the dense tropical forests of La Selva, Costa85

Rica and found that their method could accurately recreate the waveform shapes, though with86

a bias in the ground return energy. Since that study, ALS instruments have improved, with mul-87

tiple returns per laser shot being recorded and may allow unbiased simulations of large-footprint88

waveforms. Note that GEDI’s laser beams are generally expected to be less than 6o from nadir89

so the simulator does not need to be able to precisely simulate large off-nadir lidar signals.90

This paper builds upon Blair and Hofton (1999) in two ways;91

• 1) by validating simulations from discrete-return ALS against observed large-footprint, full-92

waveform lidar data over a wide range of forest and ALS instrument types.93

• 2) by adding instrument noise in order to predict measurement error.94

2 Method95

Full-waveform lidar’s measurement of vertical structure includes effects from the instrument96

characteristics (Wagner, Ullrich, Melzer, Briese, & Kraus, 2004). These are the laser footprint97

intensity distribution, system pulse shape, digitiser resolution, digitiser bit rate and the signal-98

to-noise ratio (SNR). These characteristics are illustrated in figure 1. The laser footprint inten-99

sity distribution is the intensity at each point on the ground, typically a Gaussian defined by the100

diameter at which the intensity drops to 1/e2 of the maximum. The emitted laser pulse is spread101

over a finite time and a detector has a finite response speed. The convolution of these two effects102

gives the lidar system pulse and is typically near Gaussian, though can be asymmetric, and is103

defined by the full-width half-maximum or the σp width of the Gaussian (FWHM = 2.35 ×104

σp). The recorded energy is digitised at a finite rate, giving the digitiser resolution of the full-105

waveform (typically 1-2 ns). The recorded waveforms are subject to noise from background light,106

photon shot noise and electronic noise. Finally, the waveform intensity values plus noise are recorded107

as digital numbers with the precision quantised to a digital number (DN) with a finite digitiser108

resolution (typically 8-12 bits giving 256-4096 possible intensity values). The parameters for GEDI109

and the two LVIS campaigns used in this paper are given in table 1. Note that LVIS is config-110

urable and these parameters are only for the LVIS datasets used. These came from the AfriSAR111

(Lope, Mabounie and Rabi in 2016), the DESDynI pre-calibration (Sierra Nevada, Howland and112

Hubbard Brook in 2008-09) and La Selva (1998) campaigns. The La Selva LVIS data was col-113

lected in an earlier campaign than DESDynI (Blair & Hofton, 1999), but the characteristics were114

the same as those during the DESDynI flights and so those datasets have been grouped.115
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Instrument GEDI LVIS (DESDynI) LVIS (AfriSAR)

Footprint width (4σf ) 19-25 m 20-24 m 13-22 m

System pulse (FWHM) 15.6 ns 7 ns 11.2 ns

Digitiser resolution 15 cm 30 cm 15 cm

Bit rate 12 bit 8 bit 10 bit

Wavelength 1064 nm 1064 nm 1064 nm

Number of power tracks 4 Scanning Scanning

Number of coverage tracks 4 NA NA

Beam sensitivity 92%-99.5% ≈98% ≈99.6%

Geolocation accuracy (1σ) 8 m 1 m 1 m

Along track spacing 60 m Scanning Scanning

Across track spacing 600 m Scanning Scanning

Altitude 400 km 8 km 8 km

Maximum angle of incidence 6o 7o (two flights, 18o) 8o

Table 1. GEDI and LVIS lidar characteristics

2.1 Discrete return ALS116

The simulator follows the method outlined in Blair and Hofton (1999). The laser footprint117

intensity distribution can be modelled as a Gaussian, weighting the contribution of each ALS point118

by its distance from the footprint centre.119

Iw,i = Ii
1

σf

√
2π

e
−

(xi−x0)2+(yi−y0)2

2σ2
f (1)

Where Iw,i is the weighting of the ith point, xi and yi are the horizontal coordinates of that120

point, x0 and y0 are the horizontal coordinates of the footprint centre and σf is the width of the121

footprint. For non-Gaussian footprints, the exponential in equation 1 can be replaced by an ar-122

ray of intensity values measured in a laboratory. Ii is a relative weighting of that point to ac-123

count for any partial hits. There are three options for setting this value. All points could be weighted124

equally (Ii = 1) ignoring partial hits, as used by Blair and Hofton (1999) and referred to through-125

out the paper as “count”. Points could be weighted by the number of hits each beam records (Ii =126

1/nHits), which assumes that each hit along a laser beam intersects a surface of equal area, as127

used by Armston et al. (2013) and referred to as “frac”. Finally, it can be assumed that the re-128

turn laser intensity recorded by ALS systems is proportional to the surface area intersected, as129

used by Hancock et al. (2017) and referred to as “int”. This last assumption is valid for full-waveform130

lidar but is often not the case for discrete return systems over diffuse targets (Hancock et al., 2015).131

Each point is convolved by the system pulse shape, p(z), along the range axis to produce132

the ideal waveform, I(z). The convolution can be performed before or after binning. Convolv-133

ing before prevents aliasing for systems with pulse lengths short compared to the sampling in-134

terval, but is more computationally expensive. Convolving after allows much faster operation and135

that option is tested here.136
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I(z) =

N
∑

i

Iw,i ⊗ p(z − zi) (2)

Where N is the number of ALS points in this footprint, and zi is the elevation of the ith137

point. For a Gaussian system pulse of width σp this is given by:138

p(z − zi) =
1

σp

√
2π

e
−

(z−zi)
2

2σ2
p (3)

For an asymmetric pulse the shape can be read from a measured array instead of using equa-139

tion 3. If convolving each point individually, the result of equation 2 is binned to the correct digi-140

tiser resolution to produce a noise-free simulated waveform.141

For a given simulated footprint, the ALS pulse density will be variable due to varying scan142

angles and flight-line overlap. It could be the case that there are more ALS points from one part143

of the footprint, giving that part a disproportionate effect on the simulated waveform. This can144

be corrected by weighting the contribution of each ALS point by the inverse of the pulse den-145

sity at that point. The pulse density at a point was calculated as the number of last returns ver-146

tically projected onto a 1.5 m grid.147

Separate simulated waveforms can be made from ALS points classified as ground and canopy148

to distinguish the ground and canopy portions of the waveform (examples will be shown in fig-149

ure 4). This allows ground-finding algorithms to be tested in terms of ground elevation accuracy150

and total extent of the ground energy, required for estimates of canopy cover (Armston et al.,151

2013; Tang & Dubayah, 2017) and slope (Mahoney et al., 2014).152

2.2 Noise153

Lidar waveforms contain noise from background light and electronic noise. The signal in-154

tensity above this noise is controlled by the laser power, surface reflectance, atmospheric atten-155

uation, receiver telescope size, instrument optical efficiency and the detector efficiency (Wagner156

et al., 2004). The expected performance of GEDI has been calculated, given the known laser power,157

optical efficiencies, mean atmospheric transmission at 1064 nm, expected canopy and ground re-158

flectance, a range of background illumination intensities and the detector response, as modelled159

by Davidson and Sun (1988). This provided an expected background noise distribution and an160

expected return signal strength above that, to give the signal-to-noise ratio (SNR).161

Lidar’s SNR can be given in terms of a link margin; that is the ratio between a threshold162

set to give a certain probability of background noise being above it (false positive), tn, and a thresh-163

old set to give a certain probability of true signal being below it (false negative), ts, in decibels164

(Geng et al., 2015). For white Gaussian noise, all points in a waveform will have a random value165

drawn from a Gaussian added, producing the noised waveform (as in figure 1). The probability166

of a given intensity threshold either including or excluding a feature can be calculated from the167

cumulative Gaussian distribution. For sections of pure noise, this Gaussian is centred on the mean168

noise level, and for sections with real signal, the Gaussian is centred on the intensity of the real169

return. Note that this assumes that photon shot noise (Davidson & Sun, 1988) is negligible. Shot170

noise is proportional to signal intensity. When predicting measurement error we are interested171

in the parts of the waveform likely to be lost in noise, which are low intensity. Therefore it is hoped172

that this assumption is valid, and it will be tested in section 4.3. A waveform with white Gaus-173

sian noise added to a true return, and the resulting noise and signal thresholds, is illustrated in174

figure 2.175

For GEDI, the signal threshold, ts, was set to a level that gives a 10% probability of a false176

negative (i.e., 10% of the Gaussian distribution, centred on the signal amplitude, is below that177
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Figure 2. Illustration of link margin for defining the noise level. tn is set to give a 5% chance of there

being a part of the background noise distribution above it within a 30 m window (false positive). ts is set

to give a 10% chance of the peak of the ground return distribution being beneath it (false negative).

threshold) and the noise threshold, tn, was set to give a 5% probability of a false positive across178

a 30 m window. Note that each waveform bin has a given probability of being a false positive179

(fraction of Gaussian centred on mean noise level above tn), so the total probability within a win-180

dow is the probability of each bin, multiplied by the number of bins; ie. 30m/digitiser resolution181

× integral of Gaussian above noise threshold. This gives a probability per waveform bin of 5%/(30/0.15) =182

0.025%. The ratio of these two thresholds, in decibels, gives the link margin, linkM .183

linkM = 10× log10

(

ts
tn

)

(4)

2.2.1 Beam sensitivity184

The link margin can also be expressed in terms of a beam sensitivity, that is, the canopy185

cover that we would expect to be able to detect the ground through 90% of the time with a 5%186

chance of a false positive. The amplitude of a ground return, µg, with a 0 db link margin can187

be related to the noise distribution width, σn, by calculating the intensity of a real return needed188

to make tn=ts.189

µg = σn × 4.76 (5)

Where 4.76 is the number of standard deviations between two Gaussian distributions needed190

for the noise and signal thresholds (tn and ts) to be equal for the 5% false positive and 10% false191

negative rates used for GEDI. The beam sensitivity is then the fraction of energy contained within192

a Gaussian with this peak amplitude. In percent this is given by:193

bs =

(

1−
µgσeff

√
2π

∑

∞

−∞
I(z)− n

)

× 100 (6)
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Where n is the mean noise level and σeff is the ground return’s effective width. σeff can194

be calculated from the system pulse width (convolution of transmitted pulse with receiver response),195

σp, the footprint width, σg and the ground slope, θ. This equation can be inverted to calculate196

ground slope from return width, in a similar way to Mahoney et al. (2014), but without the need197

for empirical calibration.198

σeff =
√

σ2
p + σ2

f tan
2(θ) (7)

The beam sensitivity can be used to calculate the probability of a lidar waveform being able199

to detect the ground through a given canopy cover, as shown in figure 3. Note that each curves200

passes 10% on the y-axis at the canopy cover equal to the beam sensitivity.201
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Figure 3. Probability of waveforms to detect the ground against canopy cover for two different beam

sensitivities.

2.2.2 Adding noise to simulations202

Throughout the rest of this paper, instrument noise will be defined in terms of the beam203

sensitivity. To add noise to waveforms simulated by equation 2, white Gaussian noise with width204

σn is added to all points. σn is found by numerically solving equations 4, 5, 6 and 7 for a given205

beam sensitivity. A mean offset is then added and the precision truncated to the relevant bitrate.206

The GEDI power beams are expected to have beam sensitivities of 99.5% by night and 94% by207

day whilst the coverage beams are expected to have sensitivities of 96% by night and 92% by day208

(Table 1). Note that these values assume a loss of 3 db from predictions, to be conservative. LVIS209

data used in these studies had mean beam sensitivities around 98-99.6% though some individ-210

ual footprints were found to be as low as 70% in hazy conditions.211

2.3 Simulator conclusion212

The above steps were combined with the signal processing and file input/output libraries213

described in Hancock et al. (2017) to form a simulator in C. The code is available on bitbucket214

from Hancock (2018) under a Gnu Public License. By changing the values described in table 1,215

any downwards looking, large-footprint, full-waveform lidar instrument can be simulated.216
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Site LVIS date ALS date ALS system ALS pulse ALS point
density density

La Selva Mar 2005 Mar 2006 Leica ALS50 0.88 m−2 1.15 m−2

Sierra Nevada Sep 2008 Sep 2008 Optech Gemini 10.6 m−2 14.7 m−2

Hubbard Brook Aug 2009 Sep 2009 Optech ALTM 3100 2.76 m−2 4.02 m−2

Howland Aug 2009 Sep 2009 Optech ALTM 3100 3.88 m−2 4.82 m−2

Lope Feb 2016 Jul 2015 RIEGL VQ480U 7.8 m−2 11.1 m−2

Mabounie Feb 2016 Jul 2015 RIEGL VQ480U 4.4 m−2 4.4 m−2

Rabi Feb 2016 Jul 2015 RIEGL VQ480U 4.2 m−2 6.0 m−2

Table 2. ALS and LVIS data used in simulator validation

3 Validation experiments217

The simulator was validated against observed large-footprint, full-waveform lidar data col-218

lected by the LVIS system over a range of forest types and covering a range of ALS systems and219

sampling densities. The simulator was validated in terms of how well it can recreate waveform220

metrics derived from real large-footprint, full-waveform lidar (section 3.1), how consistent sim-221

ulated waveform metrics are across a range of ALS survey characteristics for a single site (sec-222

tion 3.2), and how well it can recreate the ground finding error statistics of real large-footprint,223

full-waveform lidar (section 3.3).224

The datasets used to compare ALS simulations to LVIS (sections 3.1 and 3.3) are listed in225

table 2 and the properties of the forests are given in table 3. La Selva is in Costa Rica, Sierra226

Nevada, Hubbard Brook and Howland are in the USA and Lope, Mabounie and Rabi are in Gabon.227

LVIS has a similar footprint size to GEDI, a shorter pulse length and a higher beam sensitivity.228

The higher beam sensitivity means there is less chance of small waveform features being lost in229

background noise, whilst the shorter pulse length allows finer resolution of canopy returns, mak-230

ing the waveform more complex. Thus validating against LVIS is a more stringent test than against231

GEDI and if the simulator is capable of simulating LVIS accurately, it can simulate GEDI. The232

ALS datasets covered a range of wavelengths, with the Optech and Leica systems at 1064 nm233

whilst the RIEGL system was 1550 nm. The Pearson-correlation maximisation method described234

in Blair and Hofton (1999), with an added simplex optimisation for computational speed (Press,235

Tuekolsky, Vetterling, & Flannery, 1994), showed that the horizontal geolocation of the ALS to236

LVIS datasets were within 1 m of each other. Remaining vertical datum differences and small237

horizontal offsets between the ALS and LVIS datasets were corrected by an affine transforma-238

tion of the ALS data per site.239

3.1 Simulated waveform accuracy240

Simulations of LVIS-like waveforms, using the appropriate values for footprint width, pulse241

shape, beam sensitivity and digitiser resolution in table 1, were run for every LVIS footprint lo-242

cation that was covered by ALS data at each site with each of the three ALS point weighting meth-243

ods (count, frac and int) and with and without normalising for ALS pulse density to give a to-244

tal of six possible simulation methods. The accuracy of the simulated waveforms was quantified245

by calculating the Pearson-correlation coefficient between observed and simulated LVIS wave-246

forms (Blair & Hofton, 1999) and by the difference between relative height (RH) metrics (Drake247

et al., 2002) derived from observed and simulated LVIS waveforms. To ensure that any disagree-248
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Site Biome Height Cover Slope N samples

La Selva Evergreen broadleaf 30 m 81 % 13.1o 178,577

Sierra Nevada Evergreen needleaf 39 m 43 % 13.7o 376,677

Hubbard Brook Deciduous broadleaf 24 m 90 % 13.7o 186,172

Howland Deciduous broadleaf 17 m 76 % 2.8o 265,147

Lope Evergreen broadleaf 31 m 75 % 12.1o 573,402

Mabounie Evergreen broadleaf 36 m 95 % 12.6o 1,279,272

Rabi Evergreen broadleaf 34 m 92 % 8.4o 71,732

Table 3. Mean properties of each site within LVIS footprints and number of LVIS footprints used in the

comparison.

ments were solely due to differences in the simulated waveform shapes, RH metrics were calcu-249

lated relative to the same ground elevation for both datasets. This was estimated from the orig-250

inal ALS data, using LAStools (Isenburg, 2011).251

Past studies have shown that the lower the ALS densities, the greater the chance of the ALS252

point cloud not penetrating to the ground (Leitold, Keller, Morton, Cook, & Shimabukuro, 2015).253

That would lead to the simulations being inaccurate. This was tested by relating metric differ-254

ences to ALS pulse density. Similarly, lower beam sensitivity LVIS waveforms may miss weak ground255

or canopy returns, making them an unreliable truth. To investigate these effects, we related met-256

ric differences to LVIS beam sensitivity. Also, the greater the lidar beam zenith angle, the longer257

the path length through the canopy, which may adjust the vertical distribution of returns. To258

test for this, differences in waveform metrics were related to LVIS scan angle and the mean scan259

angle of ALS within an LVIS footprint.260

The difference between metrics were compared to surface properties (canopy cover and ground261

slope) to ensure that the simulator can be used across a range of conditions. Each site was ex-262

amined separately to identify any differences that might result from the range of forest structures263

or the different ALS instruments used.264

3.2 Simulator consistency265

The validation of simulated LVIS against observed LVIS above used only a single ALS dataset266

per site, collected from a single altitude with uniform scan parameters and laser wavelengths. Whilst267

the pulse density varied with scan angle and varying overlap between flight-lines, previous stud-268

ies have shown that the probability of detecting targets (and so correctly characterising the fo-269

liage profile) depends upon the beam sensitivity of the lidar signal which in turn is controlled by270

altitude and laser pulse rate (Morsdorf, Frey, Meier, Itten, & Allgöwer, 2008), as well as other271

factors out of the control of the surveyor. For a given scan rate, the greater the altitude, the lower272

the pulse density and the larger the footprint will be. A larger footprint has a lower laser inten-273

sity for any given point within, potentially meaning that small objects do not return enough sig-274

nal to trigger a recorded point (such as sparse canopies or the ground under dense canopies). A275

higher laser pulse rate will give a greater pulse density but less laser energy per pulse, lowering276

the SNR and potentially preventing the detection of small objects. Laser wavelength may also277

affect simulation accuracy. Green vegetation has a higher reflectance at 1064 nm than 1550 nm,278

so different amounts of energy will be returned by ground and canopy returns to different wave-279
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length instruments. The waveform shape could potentially be changed if the energy return dif-280

ferences crossed the instrument triggering threshold.281

To assess whether varying altitude and laser pulse rate affect the simulated waveform ac-282

curacy, LVIS waveforms were simulated using ALS data collected over the Injune Landscape Col-283

laborative Project in Queensland, Australia on the 20th August 2015. Data was collected with284

a RIEGL LMS-Q560i (1550 nm laser pulsing at 240 kHz) and RIEGL Q680 (1064 nm laser puls-285

ing at 400 kHz) at a range of flying altitudes (350 m - 700 m). The canopy was sparse, with a286

mean cover of 22% and inter-quartile range of 18% to 41%, calculated from ALS data. At this287

low cover, canopy returns from lower SNR ALS pulses may be beneath the instrument trigger-288

ing threshold, potentially causing an underestimate of RH metrics.289

Five plots were covered by three or four flight-lines by each ALS instrument at two or three290

different flying altitudes. Simulations of LVIS-like waveforms were made for each flight-line in-291

dependently, and for all combined to further increase the range of pulse densities. For each ALS292

instrument, the lowest altitude flight with all flight-lines combined was used as a benchmark, thus293

there were two benchmarks. RH from simulations with all combinations of data were compared294

to the two benchmarks. The RH metric differences were related to pulse density, laser pulse rate,295

mean scan angle and altitude to see how consistent the simulated RH metrics were with these296

survey parameters.297

3.3 Simulated noise accuracy298

The white Gaussian noise used here is an approximation of the true detector noise distri-299

bution (Davidson & Sun, 1988). The impact of this approximation on the simulator’s ability to300

predict measurement error was tested. LVIS waveforms were simulated and noise added to give301

the same beam sensitivities as observed LVIS. Observed LVIS waveforms with low beam sensi-302

tivities due to atmospheric attenuation have not been removed to ensure that the simulator is303

capable of predicting the full range of measurement errors that full-waveform lidar can suffer. In304

the GEDI products, these low sensitivity beams would be rejected to avoid errors.305

When processing waveform lidar data, algorithms are run to extract and geolocate the ground306

return. If footprint sensitivities are insufficient and the false alarm rate set too high, then ground307

elevation errors will occur. To investigate such errors between simulated and observed waveforms,308

the locations of the lowest modes in observed and simulated LVIS waveforms were extracted us-309

ing three ground-finding algorithms. Those were Gaussian fitting, “Gauss” (Hofton, Minster, &310

Blair, 2000), the lowest inflection point, “infl” (zero-crossing point of the second derivative) and311

the lowest maximum, “max” (zero-crossing point of the first derivative). Observed and simulated312

LVIS waveforms were passed through the same signal processing software to remove noise be-313

fore applying the ground-finding method. The signal was smoothed by a Gaussian with a width314

equal to 3/4 of the system pulse and a background noise threshold was set as the mean noise plus315

3.5 standard deviations (Hofton et al., 2000). The first and last signal returns were identified as316

the first and last points with at least three consecutive waveform bins above the noise thresh-317

old, tracking back from each until the signal dropped to the mean noise level to avoid truncat-318

ing real signal (Hancock, Disney, Muller, Lewis, & Foster, 2011). Note that this is not the final319

GEDI ground-finding algorithm or that used for the LVIS level 2 products.320

Ground elevation error was calculated as the difference between the elevation estimated from321

the noised waveforms (from both simulated and observed LVIS) and the ground elevation esti-322

mated from ALS (Isenburg, 2011). The ALS ground elevation estimates were only validated for323

La Selva, where they were found to have a (root mean square error) RMSE of 1.66 m against ground-324

control survey points (Kellner, Clark, & Hofton, 2009). Ground elevations at other sites were not325

validated but past studies suggest that, at the pulse densities of these datasets, ALS can iden-326

tify the ground elevation to within 1 m through dense forest canopies (Leitold et al., 2015). Ground327

elevation errors were calculated as a function of the controlling variables, which are beam sen-328
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sitivity, canopy cover and slope, from both observed and simulated LVIS waveforms. The errors329

were binned in to 2% canopy cover, 5o slope and 2% beam sensitivity intervals and the mean bias330

and RMSE for each combination calculated. The errors from simulated waveforms were compared331

to the errors from observed LVIS waveforms in terms of the mean bias, RMSE and the percent-332

age of variance in error explained.333

4 Results and discussion334

4.1 Waveform accuracy results335

Some examples of simulated and observed LVIS waveforms are shown in figure 4, showing336

that they match well visually and illustrating the simulator’s ability to isolate the ground por-337

tion of the waveform. Of all the factors discussed in section 3.1, ALS pulse density was found338

to be the main cause of discrepancies between simulated and observed waveforms. Figure 5 il-339

lustrates this relationship for the RH50 metrics at four sites (all other RH metrics and the Pearson-340

correlation showed a similar trend, other than RH5 and RH98 at some sites, which will be dis-341

cussed later). At low ALS pulse densities, differences between RH metrics from simulated and342

observed waveforms were largest. Poor characterisation of vegetation is a well known shortcom-343

ing of low density ALS (Leitold et al., 2015). For the data available to this study, above a cer-344

tain density there was no longer a dependence of RH metric accuracy on ALS pulse density. Thus345

ALS pulse density seems a sufficient measure to ensure simulator accuracy. An error threshold346

of 1.5 m absolute median bias and 3 m inter-quartile range was used to determine minimum us-347

able ALS densities of 1.5 pulses m−2 for the Optech systems over Hubbard Brook and Howland,348

3 pulses m−2 for RIEGL systems over Lope, Rabi and Mabounie and the Optech system over349

Sierra Nevada, and 0.75 pulses m−2 for the Leica system over La Selva. Repeating figure 5 with350

RH98 at Sierra Nevada revealed that RH98 required a higher pulse density threshold than RH50351

to ensure no bias (3 pulses m−2 instead of 1.5 pulses m−2 needed by RH50). This is likely caused352

by low density ALS data missing the tops of conifer trees, Sierra Nevada being the only conif-353

erous forests tested (Zimble et al., 2003).354

Repeating figure 5 with RH5 and RH2 revealed a 1 m bias at Sierra Nevada and Howland355

for all ALS pulse densities. This was not apparent at any other site or for any higher RH met-356

rics. Examining waveforms revealed that this was due to observed LVIS having a longer trail-357

ing tail than simulated waveforms. This only occurred in footprints with moderate canopy cover358

(≈60%), which were most common at Howland and Sierra Nevada and at Sierra Nevada were359

most common for pulse densities between 2 and 4 pulse m−2, causing the bias apparent in fig-360

ure 5(d). The other sites had more bimodal canopy cover distributions with few waveforms over361

moderate canopy covers. At high canopy covers, no tail was noticeable above background noise362

and observed and simulated LVIS waveforms matched, possibly because there was insufficient en-363

ergy at the ground to cause a noticeable tail. Observed and simulated waveforms over bare ground364

were compared at all sites to make sure that the system pulses being used were appropriate. In365

all cases, bare ground waveforms matched. The longer tails in observed LVIS could possibly be366

due to either multiple scattering (when there is sufficient energy reaching the ground with suf-367

ficient density foliage to cause scattering) or some electronic detector effect, but further inves-368

tigation is required to determine the exact cause. In either case, simulated RH5 and below may369

be biased in moderate canopy covers and cannot be relied upon.370

Repeating figure 5 with ALS datasets decimated by removing a random fraction of all ALS371

pulses, showed that the ALS pulse density thresholds scaled with the level of decimation; a dataset372

with 50% decimation had a threshold 50% of that reported above. This suggests that these thresh-373

olds were specific to the survey configurations used here. These thresholds are tentatively pro-374

posed as minimum usable ALS densities, but some survey configurations may require different375

thresholds. Without additional ALS datasets overlapping with LVIS or GEDI data, this cannot376

be investigated further. Any calibration using simulated data should check whether any outliers377
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Figure 4. Comparison of four individual simulated and observed LVIS waveforms with the ground

portion of the simulated waveform shown.
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(d) Sierra Nevada, Optech

Figure 5. Boxplots showing the difference between RH50 from simulated and observed LVIS wave-

forms against ALS pulse density. The boxes show the inter-quartile range (25th and 75th percentile), the

bar the median and the whiskers are 1.5 times the inter-quartile range long. Outliers have been excluded

from this plot and will investigated in detail later, along with the higher RMSE at Sierra Nevada around

3.5 pulses m−2.
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in the analysis have low ALS pulse density to check the appropriateness of the above thresholds378

for that ALS dataset.379

At some sites, partial cloud cover caused a large range in LVIS’s beam sensitivity. For low380

LVIS sensitivity, areas of low waveform intensity were lost in noise, leading to inaccurate RH met-381

rics. To avoid these errors in observed RH metrics impacting the simulator assessment, a min-382

imum LVIS beam sensitivity of 92% for DESDynI LVIS and 98% for AfriSAR LVIS was set for383

all further analysis. Above these sensitivities there was no trend in the difference between sim-384

ulated and observed RH metrics with LVIS beam sensitivity.385
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Figure 6. Examples of simulated and observed LVIS waveforms with large RH50 differences. The red

line shows RH50 from LVIS and the black line RH50 from the simulation.

LVIS was tested up to a beam zenith angle of 8o at all sites and up to 18o at Sierra Nevada,386

well above the expected 6o limit of GEDI. The difference between observed and simulated RH387

metrics showed no consistent bias with LVIS or ALS beam angle, though mean correlation started388

to decrease above 8o. All further analysis was limited to LVIS footprints with zenith angles less389

than 8o. The ALS mean scan angle within a footprint reached 30o with no impact on simulator390

accuracy apparent.391

The remaining outliers and waveforms with higher RMSEs at medium pulse density in fig-392

ure 5(d) were examined and some representative examples are shown in figure 6. Some simula-393

tions with large differences between simulated and observed RH50 were for waveforms with a canopy394

cover around 50%, so that RH50 height was in a section of relatively low intensity (figure 6(a)).395

For RH metrics in areas of relatively low waveform intensity, a very small change in the relative396

ground to canopy energies would cause a large shift in those RH metrics. The shift distance is397

directly proportional to the integral of the waveform around that point. For waveforms with large398

RH50 differences, the other RH metrics tested (RH98, RH75, RH25, RH5 and RH2) all had small399
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differences, as the waveform intensities and integrals were greater than at RH50. Figure 7 shows400

this ripple of increased uncertainty of RH metrics at canopy covers equal to one minus that RH401

metric and figure 8 shows why the shift in RH metric is greatest at areas of relatively low wave-402

form intensity.403
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Figure 7. Difference between simulated and observed LVIS RH metrics against canopy cover over

Mabounie, showing a ripple of uncertainty at a canopy cover equal to one minus that RH metric.

This is a general property of RH metrics and any model using RH metrics will need to take404

this uncertainty in areas of relatively low intensity into account, as a small change in canopy cover405

(whether due to leaf wilting, branch dropping or green-up etc.) will cause the RH metric around406

1-canopy cover to shift by a large amount without an appreciable change in AGBD (eg. RH75407

for 25% canopy cover and RH25 for 75% canopy cover). A model that uses two or more RH met-408

rics may avoid this issue. Others were clearly due to fallen trees (figure6(c)), but these were too409

rare to affect the final statistics.410

In order to compare the simulator accuracy at all sites and for all RH metrics, histograms411

of the difference between simulated and observed LVIS RH metrics are shown in figure 9. For412

all simulation methods, the mean RH metric difference is sub-metre with RMSEs around 4.7-5.7413

m and correlations around 0.91 (table 4). All methods had similar RMSEs and correlations, but414

the lowest bias was achieved with the count method and normalising for ALS sampling density.415

This method will be used for the rest of this paper and for GEDI’s calibration. Large differences416

(>5 m) were rare and always explained by one of the cases illustrated in figure 6.417

That metrics from waveforms simulated from data collected by the 1550 nm RIEGL VQ480U418

showed no bias compared to those from the observed 1064 nm LVIS data, despite the RIEGL hav-419

ing a much lower canopy (green vegetation) reflectance, shows that the SNR of the ALS was suf-420

ficient to ensure that the lower reflectance did not place the return intensity beneath the trig-421

gering threshold so that the returns were still representative of the foliage profile. The wavelength422

of discrete return ALS does not seem to affect simulation results.423
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Figure 8. Illustration of distance a 2% change in energy can cause for RH metrics at points of high

and low waveform intensity. Black lines mark RH50 and RH80. Red boxes indicate a shift that would

result with a +/- 2% energy change.

Point Normalise Bias RMSE Correlation
Weight ALS density RH25 RH50 RH98 RH25 RH50 RH98

count yes 0.06 m 0.18 m 0.22 m 5.61 m 5.26 m 4.78 m 0.909

int yes 0.52 m 0.21 m 0.21 m 5.65 m 5.30 m 4.75 m 0.906

frac yes 0.54 m 0.26 m 0.23 m 5.60 m 5.29 m 4.73 m 0.909

count no 0.25 m 0.54 m 0.43 m 5.66 m 5.30 m 4.81 m 0.910

int no 0.74 m 0.60 m 0.44 m 5.66 m 5.27 m 4.78 m 0.906

frac no 0.78 m 0.65 m 0.45 m 5.63 m 5.24 m 4.76 m 0.908

Table 4. Difference between RH metrics from simulated and observed LVIS waveforms across all sites

for the six possible simulation methods.
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Figure 9. Histograms of difference between observed and simulated LVIS RH metrics for the count

method with ALS pulse density normalisation.
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4.2 Simulator consistency results424

The difference in RH metrics from simulations with ALS at different altitudes, laser pulse425

rates and pulse densities were most strongly correlated to pulse density. Figure 10 shows a box-426

plot of the differences between simulated RH50 from all datasets and the lowest altitude, high-427

est laser pulse rate dataset (RIEGL Q680). Results for the lower pulse rate benchmark (RIEGL428

Q560i) were identical and all other RH metrics showed the same relationship. This shows that429

there can be large differences at less than 3 pulses m−2, the same threshold selected for the RIEGL430

VQ480i in section 4.1. After removing all simulated waveforms with less than 3 pulses m−2, no431

trend in RH metric difference was found with pulse density, scan angle, altitude or laser pulse432

rate. That there was not an underestimate of RH metrics for the high altitude, high laser pulse433

rate scans shows that even in this sparse canopy, the ALS had sufficient SNR to detect weak canopy434

returns. Mean RH metric differences were less than 10 cm and RMSEs less than 50 cm. Outliers435

(greater than 5 m RH difference) were examined and were explained by either rare data regis-436

tration issues or else were for RH metrics in areas of relatively low intensity, where a small change437

in waveform shape can cause a large shift in RH metric position, as in figure 8. It is concluded438

that the simulated RH metrics are robust to ALS survey characteristics as long as there is suf-439

ficient pulse density, and that the pulse density is an adequate metric of simulator accuracy.440
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Figure 10. Boxplots of difference between RH50 derived from simulated LVIS waveforms from ALS

datasets with different survey configurations over the same site, using the highest laser pulse rate (RIEGL

Q680), lowest altitude dataset as the baseline

4.3 Noise accuracy results441

The noise accuracy analysis included all LVIS beam sensitivities, though low ALS pulse den-442

sities and LVIS zenith angles > 8o were still excluded. Figure 11 shows a noised waveform with443

both observed and simulated waveforms showing similar ground-finding errors. Note that errors444

this large, in observed or simulated LVIS, are rare cases, as shown by figure 12. In this case, knowl-445

edge of the ground elevation provided by the independent ALS estimate indicates that there was446

no discernible energy above noise at the expected height (0 m). In both cases a canopy return447

has been incorrectly selected as the ground, leading to a 20 m inaccuracy for both. This wave-448

form had a beam sensitivity of 66.1% whilst the canopy had a cover of 99.7%, so this is not an449

unexpected results (as shown in figure 3). In the GEDI products, waveforms that are likely to450

be unable to see the ground will be flagged as potentially inaccurate and left out of the final grid-451

ded products to avoid errors.452
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Figure 11. Comparison of ground elevation estimates from observed and simulated LVIS waveforms

over Lope. The red line shows the estimate of ground elevation from observed LVIS and the black the

estimate from simulated LVIS. This waveform had a canopy cover of 99.7% and a beam sensitivity of

96.1%.

Method Bias diff RMSE diff Bias var RMSE var

Gauss 1.37 m -1.22 m 85 % 72 %

Inflection 1.59 m -1.37 m 81 % 71 %

Maximum -1.68 m -1.96 m 67 % 78 %

Table 5. Difference between ground-finding error estimates from observed and simulated LVIS wave-

forms in terms of mean bias, RMSE and as a percentage of variance explained by the simulations.

Figure 12 shows scatterplots of the mean bias and RMSE from simulated noised waveforms453

against those from observed LVIS. Each point represents the mean error for all waveforms within454

a bin with a given canopy cover (2% intervals), slope (5o intervals) and beam sensitivity (2% in-455

tervals). Table 5 shows that the simulator predicted the ground-finding errors within 2 m of re-456

ality and explained over 80% of the variance for the Gaussian and inflection ground-finding meth-457

ods, reduced to 67% for the maximum method. In all cases over 70% of the variance in RMSE458

is explained. The area of greatest interest is waveforms with beam sensitivities just below the459

canopy cover, where there is a high chance of ground returns not being distinguishable in the wave-460

forms. The analysis was repeated with just these waveforms and measurement errors from ob-461

served and simulated waveforms agreed. Note that the large errors in figure 12 are for waveforms462

with beam sensitivities below the canopy cover.463

The simulator slightly overestimated the bias in ground elevation and underestimated the464

RMSE. Separating the scatterplots by canopy cover and slope and examining the raw waveforms465

revealed that this was because the ground-finding algorithm triggered on the subterranean tail466

on observed LVIS (discussed in section 4.1), causing a negative ground elevation error, more of-467

ten than on simulated LVIS. This was infrequent but occurred often enough to slightly reduce468

the mean bias from observed LVIS and increase the RMSE. Care should be taken if using the469

simulated waveforms to assess ground-finding algorithms and results should be tested against ob-470

served large-footprint lidar data where they overlap.471
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Figure 12. Scatterplots of ground-finding error on observed and simulated noisy LVIS data, binned by

canopy cover, slope and beam sensitivity across all sites for three ground-finding algorithms.
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5 Conclusions472

A simulator for generating GEDI measurements, including noise, from any ALS data has473

been presented. Comparison with observed large-footprint, full-waveform data shows the sim-474

ulator to be accurate for the three most common ALS instrument manufacturers across a wide475

range of forest types. RH metrics from simulated LVIS waveforms showed less than 0.22 m bias476

and 5.7 m RMSE compared to observed LVIS waveforms, as long as the ALS data were of suf-477

ficient pulse density. Measurement errors due to instrument noise were predicted by the simu-478

lator within 1.5 m of those retrieved from observed LVIS waveforms. The uncertainty in simu-479

lated metrics is larger for RH metrics in areas of relatively low waveform intensity, but this is480

a property of RH metrics rather than a limitation of the simulator. The uncertainty has been481

quantified and will be used as a measure of the simulator accuracy.482

Simulations were performed over a single site with a range of ALS survey characteristics,483

varying flying altitude, laser pulse rate and flight-line overlap. This had no significant impact on484

simulated metrics as long as the ALS pulse density was above the thresholds identified. This sug-485

gests that ALS pulse density can be used to quantify simulator accuracy and that simulations486

with ALS densities above the given thresholds will be accurate.487

The simulator code is freely available through bitbucket under a Gnu Public License (Han-488

cock, 2018). It can read any ASPRS las format data and outputs simulated waveforms as ASCII489

or HDF5 files.490
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